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Role of slip between a probe particle and a gel in microrheology
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In the technique of microrheology, macroscopic rheological parameters as well as information about local
structure are deduced from the behavior of microscopic probe particles under thermal or active forcing.
Microrheology requires knowledge of the relation between macroscopic parameters and the force felt by a
particle in response to displacements. We investigate this response function for a spherical particle using the
two-fluid model, in which the gel is represented by a polymer network coupled to a surrounding solvent via a
drag force. We obtain an analytic solution for the response function in the limit of small volume fraction of the
polymer network, and neglecting inertial effects. We use no-slip boundary conditions for the solvent at the
surface of the sphere. The boundary condition for the network at the surface of the sphere is a kinetic friction
law, for which the tangential stress of the network is proportional to relative velocity of the network and the
sphere. This boundary condition encompasses both no-slip and frictionless boundary conditions as limits. Far
from the sphere there is no relative motion between the solvent and network due to the coupling between them.
However, the different boundary conditions on the solvent and network tend to produce different far-field
motions. We show that the far-field motion and the force on the sphere are controlled by the solvent boundary
conditions at high frequency and by the network boundary conditions at low frequency. At low frequencies
compression of the network can also affect the force on the sphere. We find the crossover frequencies at which
the effects of sliding of the sphere past the polymer network and compression of the gel become important. The
effects of sliding alone can lead to an underestimation of moduli by up to 33%, while the effects of compres-
sion alone can lead to an underestimation of moduli by up to 20%, and the effects of sliding and compression
combined can lead to an underestimation of moduli by up to 43%.
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Single-particle microrheology [1,2] has been a useful tool
for measuring material characteristics in situations where tra-
ditional rheometers are difficult to use. For example, it has
been particularly useful in obtaining rheological measure-
ments when large sample sizes are difficult to obtain, and
when removing samples from their natural environment may
be undesirable, such as in living cells. Traditional rheological
measurements typically obtain the frequency-dependent
macroscopic shear modulus G(w), which relates shear
stresses to homogeneous shear deformations. To interpret the
results of single-particle microrheological measurements,
one must know what the response of a particle embedded in
the material of question will be to driving forces (or equiva-
lently, the force exerted on the particle in response to particle
displacements). In practice, the response of such a particle
has been assumed to relate to the macroscopic shear modulus
via

f=— 67a Re{G(w) or exp(- iwt)}, (1)

when the particle with radius a oscillates at frequency @ and
displacement Re{dr exp(—iwt)}. The modulus G=G' —iG" is,
in general, complex. In microrheological experiments, the
use of this force response in conjunction with the fluctuation-
dissipation theorem has been called the “generalized Stokes-
Einstein relation” [1].
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Equation (1) holds true when the material may be treated
using continuum mechanics as a single incompressible phase
with a complex shear modulus and no-slip boundary condi-
tions between the particle and the material [2,3]. The gener-
alized Stokes-Einstein relation has been validated experi-
mentally in the test case of a solution of wormlike micelles
[4], but in many cases there are a number of issues that can
complicate microrheological measurements, including com-
pressional effects [2,5], local depletion of the polymer [6,7],
modification of local properties via surface chemistry of the
particles [8,9], and violation of no-slip boundary conditions
[10].

Although the technique of two-particle microrheology
[6,11] ameliorates many of these problems, it is much more
technically demanding than single-particle microrheology.
Furthermore, fully understanding how all the above effects
can impact one-particle microrheology allows us to use it to
understand materials and processes in which local heteroge-
neity plays an important role. In this paper we demonstrate
how to quantify the effects arising from violation of the no-
slip boundary condition for both an incompressible and com-
pressible gel. Previous studies have treated the response of
the medium to a particle in the case of no-slip boundary
conditions [2,3,5,12] and in the presence of compression [5].
In this work we include the effects of sliding between the
sphere and the medium in a two-fluid model for a gel with
phases representing a viscoelastic polymer network and fluid
solvent. Throughout this paper, we work in the dilute net-
work limit, which is appropriate for many microrheological
studies, such as those of actin networks [5] and DNA solu-
tions [7]. Sliding is implemented using a kinetic friction
law—the shear stress of the network is proportional to the
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relative velocity between the network and the surface of the
sphere, with proportionality constant =. No-slip (£ =) and
frictionless sliding (E=0) boundary conditions can be ob-
tained as limiting cases.

Physically, we can see the effects of slip by comparing
two different situations: a solid sphere of radius @ moving
with velocity v through a liquid of viscosity 7, and a clean
bubble of radius a moving through the same liquid. In the
first case, there is no slip at the surface of the sphere, and the
drag force is f=—6mnva. In the second case, the drag on the
bubble is smaller, f=—47nva. In the far field, the velocity
field for the fluid flow for the bubble is also reduced by a
factor of 2/3 relative to flow for the solid sphere [13].

Our use of the two-fluid model for a gel allows us to
include the effects of sliding via a boundary condition be-
tween the sphere and polymer network, even as the solvent
retains no-slip boundary conditions. Because the fluid and
network are coupled by drag, far from the sphere there is no
relative motion between the network and the solvent. How-
ever, because the fluid and network have different boundary
conditions, the far-field motion can have the character of that
driven by no-slip boundary conditions, that driven by fric-
tionless sliding boundary conditions, or somewhere in be-
tween. We find that the far-field motion is controlled by fre-
quency. In the high-frequency limit, the far-field solution has
the properties of a deformation driven by no-slip boundary
conditions. In this case, the solvent flow is the same as the
flow around a sphere in a simple viscous fluid and no-slip
boundary conditions, and the network is dragged along by
the solvent. In the low-frequency limit, the far-field solution
has the properties of a deformation driven by frictionless
sliding boundary conditions. The network displacement is
the same as the displacement around a sphere in a simple
elastic solid and frictionless boundary conditions, and the
drag prevents the solvent from moving faster than the net-
work.

Similarly, the force felt by the sphere interpolates between
the limits provided by no-slip and frictionless sliding bound-
ary conditions. The effects of sliding and compression can be
described using three crossover frequencies. In the follow-
ing, a is the radius of the probe particle, [ is the mesh size of
the polymer network, 7 is the viscosity of the solvent, u and
\ are effective Lamé coefficients of the network [Eq. (2)],
and = is the friction coefficient between the probe particle
surface and the polymer network [Eq. (14)].

(1) Associated with sliding, ;= |u|l/(7a) for a>1, and
o, = ||/ (na®) for a<l.

(2) Associated with sliding friction, w,~ ||/ (Ea).

(3) Associated with compression, w.=~[2u+\|%/(na?).

The properties of the force can be summarized as

(a) At frequencies larger than w;, wy, and w,, the response
force obeys Eq. (1), and moduli deduced using the general-
ized Stokes-Einstein relation match macroscopic measure-
ments.

(b) At frequencies smaller than w, and w/, but larger than
w,, effects from sliding are important, the response force is
reduced, and moduli deduced using the generalized Stokes-
Einstein relation underestimate by up to 33%.

(c) At frequencies smaller than w,, but larger than w, or
wy, effects from compression are important, the response
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FIG. 1. A probe particle modeled as a sphere of radius a oscil-
lating with frequency w in a gel modeled by two phases represent-
ing a viscous solvent and a viscoelastic polymer network with mesh
size [.

force is reduced, and moduli deduced using the generalized
Stokes-Einstein relation underestimate by up to 20%.

(d) At frequencies smaller than w;, w;, and w,, effects
from both sliding and compression are important, the re-
sponse force is reduced, and moduli deduced using the gen-
eralized Stokes-Finstein relation underestimate by up to
43%.

(e) In real systems, u and N may be frequency dependent,
and therefore so are w; ;. (w). In light of the above, if at any
point in an experiment © =< w; / .(w), caution should be exer-
cised in applying the generalized Stokes-Einstein relation.
Our results provide a way to analyze microrheological data
in this more complicated situation.

The paper is organized as follows. In Sec. I we introduce
the two-fluid model for a gel and discuss how sliding bound-
ary conditions can lead to qualitatively new behaviors. We
discuss these behaviors in the simple geometry of a gel be-
tween two oscillating plates. In Sec. II we describe the ana-
lytic solution for the force exerted on an oscillating sphere in
a gel, with some details relegated to Appendix A. Then we
describe the properties of the force in Sec. III. All the fea-
tures associated with sliding are present in the case of an
incompressible network, which we discuss in the main body
of the paper. In the discussion we describe the implications
for microrheological experiments, providing examples of
how our results can be used to help interpret microrheologi-
cal data. Finally, in Appendix B we describe the properties of
the force in the presence of both sliding and a compressible
network for completeness.

I. IMPORTANCE OF BOUNDARY CONDITIONS
IN THE TWO-FLUID MODEL FOR A GEL

We describe the gel as a polymer network with Lamé
coefficients w and A, interspersed with fluid with viscosity #
(Fig. 1). In general, we assume that the network shear modu-
lus is complex, and write w=;—iu,. The polymer and fluid
are coupled to each other by a friction coefficient I'
[5,14,15]. We ignore any inertial contributions to the equa-
tions of motion,
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wWWa+N+p)V(V-u)=T(@-v), (2)
Vv -Vp=-T(ia-v), (3)
V- [(1-¢)v+ea]=0. (4)

Here u is the displacement field of the polymer network and
v is the velocity field of the solvent. ¢ is the volume fraction
of the polymer network, and Eq. (4) expresses the overall
mass conservation of the gel. In the limit of small volume
fraction, we can approximate Eq. (4) as the incompressibility
of the solvent, V-v=0. In Egs. (2) and (3), the dot denotes a
material time derivative; throughout this paper we replace
this with a partial time derivative since we only consider
small displacements and work with these equations only to
linear order. To deduce the forces exerted by the gel, we use
the stress tensors

o™ = y[Vu+ (Vu)T]+INV -u, (5)
A= Vv + (Vv)T], (6)
ohid — Fid _ oy )

It is important to note that the moduli are effective moduli
for the network in the presence of the solvent including, for
example, osmotic effects. In addition, « and N have implicit
dependence on volume fraction ¢ since the network stiffness
depends on the network density. For a typical microrheologi-
cal experiment, we are interested in a dilute network, with
mesh size much larger than the network filament diameter.
For such a dilute network, I'= 77/12, where [ is the mesh size
of the network [5]. We note that Egs. (2) and (3) are not
restricted to the dilute network limit; for example, in a dense
network, these equations reduce to the poroelastic equations
if 719 is negligible compared to the other stresses in the
system [16].

This model has previously been used by Levine and
Lubensky [5] to confirm that even with compressional ef-
fects, the force on a sphere obeys Eq. (1) for a range of
frequencies. Above this range of frequencies inertial effects
become important, while below this range of frequencies, the
compressibility of the material can become important. So far,
the effects of compressibility have not been observed [17].

In this work, we also use the two-fluid model, so we can
incorporate the compressibility effects described above. We
ignore inertial effects, which typically are not important at
frequencies used in microrheological measurements. How-
ever, while previous results were obtained for no-slip bound-
ary conditions, we obtain exact analytical results using
boundary conditions that allow the sphere to slide with re-
spect to the polymer network. Our boundary conditions en-
compass both the no-slip and frictionless sliding limits with
respect to the polymer network.

Although Norris [12] and Oestreicher [3] have previously
obtained analytic solutions for the response function of a
sphere in a material with a single complex shear modulus for
both no-slip and frictionless sliding boundary conditions, a
crucial feature of the two-fluid model is that the boundary
conditions for the fluid and the network can be different. This
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FIG. 2. (Color online) (a) Dimensionless amplitude of oscilla-
tions as a function of dimensionless height for solvent velocity (thin
lines) and polymer network displacement (thick lines) in a gel be-
tween two oscillating plates. The polymer network has frictionless
boundary conditions at the plate surface. The dashed lines have
I'L?/ p=10%> and L<d. Far away from the plate the network and
solvent move together. The solid line has I'L?/ =107, nw/u
=0.01, and d>L. In this case the network and solvent need not
move together as a unit far from the plate. (b) Semilogarithmic plot
of the dimensionless slope of the amplitude of oscillations of the
network displacement at y=0 as a function of dimensionless fre-
quency. The shape and spacing of the plots indicates that the cross-
over frequency @, behaves as "2 for TL?/ > 1, and as I'! for
L’/ n<l.

feature opens up the possibility that the far-field behavior can
reflect either the fluid or the network boundary conditions,
depending on the frequency of motion.

A simple demonstration of this frequency-dependent be-
havior can be seen in a gel between two oscillating plates
located at y= %+ L/2 [Fig. 2(a)]. The plates oscillate with am-
plitude *£b cos wt along the X direction, with no-slip bound-
ary conditions between the plates and the solvent, v.(y
=+ L/2)= ¥ bw sin wt. First consider no-slip boundary con-
ditions between the plates and the network, u,(y=*L/2)
=*bwsin wt [5]. In this case there is no relative motion
between the network and the solvent, and both undergo
simple shear motion for all frequencies. Since the strain is
homogeneous, the stress exerted on the upper plate is by
definition determined by the macroscopic shear modulus G.
Writing this stress as o,,=Re[& exp(—iwt)] leads to
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G= pan) M iy + nw). (8)
When the network can slip past the plate, the situation
becomes more complicated, since the strain need not be ho-
mogeneous. For example, suppose there is frictionless slid-
ing between the plates and the polymer network, so that the
tangential stress on the network vanishes at the plates,
dyu(y==L/2)=0. For simplicity assume u is real (u,=0).
Only the x components of the velocity and displacement
fields are nonzero, and the solutions are

. nwk kL .
2ibw| ——y cosh 7 + sinh ky

i .
=-R —iwt) (,
e Y VA VA At C
- cosh — + 2 sinh —
i 2 2
)
k kL
2ibw< 7]iy cosh — — e sinh ky)
M 2 p
u,=—Re
’ kLnw kL . kL
—— cosh — + 2 sinh —
in 2 2
Xexp(—iwt) (. (10)

In these equations we introduce the complex quantity k
=\I['(1/p—iw/ @), which implies an associated length scale,

1
d= ;i .
Re(\NT'(1/m—iw/ )}

(11)

The penetration depth d determines the thickness of the layer
next to each plate where the solvent moves relative to the
network. Friction suppresses relative motion beyond the pen-
etration depth.

The velocity and displacement fields are plotted in Fig.
2(b). To see the range of behavior that is possible, it is useful
to consider limiting cases. First, suppose there is no coupling
between the network and the solvent, I'=0. Then the network
has zero displacement and the solvent has homogeneous os-
cillatory strain (similar to the solid black lines, Fig. 2). Now
suppose I' # 0. At sufficiently high frequency, the penetration
depth d=V2u/(I'w) is small compared to L, and there is no
relative motion between the network and the solvent in most
of the gel. Deep within the gel, the solvent has a constant
strain rate and the network has a constant strain. The pen-
etration depth d determines the size of the boundary layers
where the displacement changes from uniform strain to no
strain to satisfy the condition of zero tangential stress at each
plate. On the other hand, when the frequency is sufficiently
low, d is approximately the mesh size / and we may still have
L>d if T is big enough. In this case, again there is no rela-
tive motion between the solvent and the network deep in the
gel, but now the deformation of the network is small. The
penetration depth determines the thickness of the boundary
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FIG. 3. (Color online) Simplified profile of dimensionless oscil-
lation amplitudes for solvent velocity (blue dashed) and network
displacement (red solid) for estimating force balance. The thin
black line is the profile for a single fluid between the plates.

layers at each plate where the velocity of the solvent rises
from the small velocity of the network to the velocity of the
plate.

To determine the crossover frequency that marks the tran-
sition between the high- and low-frequency behavior, it is
convenient to plot the strain of the network at the midplane
of the gel, d,u,(0), as a function of dimensionless frequency,
o/ p [Fig. 2(c)]. At high frequency, we see that d,u,(0)
~ b/2L—the network is dragged along with the solvent and
the motion in the interior of the gel is simple shear. At low
frequency, d,u,(0) ~0—the deformation of the network and
velocity of the solvent in the interior of the gel are small.
Figure 2(c) shows the crossover for various values of the
coupling I'. The scaling of the crossover frequency wpjye
with T" can be deduced by examining the spacing of the
curves in Fig. 2(c). For I'> ng, the crossover frequency is
approximately e~ u/(L\T'7), with power law T2,
while for I < /L?, the crossover frequency is approximately
Wpjae = o/ (L’T), with power law I'™!. Later we will see simi-
lar behavior of the crossover frequency as a function of I" for
the spherical geometry.

When I' > 7/L?, we observe from Fig. 2(c) that the cross-
over frequency satisfies nwpj,/ 4 <1, and thus conclude that
d=\7/T for  near Wpiae- Let us further suppose that d
< L. In this case we can understand the crossover frequency
by examining force balance on the gel. As emphasized ear-
lier, the solvent and network move together except in the
boundary layers near the plates. The plates exert no direct
force on the network, so any shear on the network results
from the motion of the solvent dragging the network along in
the boundary layer, and any stress from network shear in the
interior is ultimately supported by the traction of the solvent
at the plate. The forces can be estimated by approximating v,
and u, with piecewise linear functions, as in Fig. 3. In the
limit of zero Reynold’s number, there is force balance on any
given layer of gel. Consider a layer bounded by the plate on
one side, with width d. At the plate, the traction is of mag-
nitude nw(b—u,)/d, where u, is the displacement at distance
d from the plate. At the other side of the layer, the solvent
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and network stresses add up to approximately (7w
+m)u,/(L/2—d). Equating these two stresses determines u,.
Using dyu,(0)~u,/(L/2~d), we find that the normalized
strain ~ Ju(0)/[b/(2L)]=(1/[1+2ud/(nLw)] . For
> ud/ (L)~ u/(LNT'7) the normalized strain is approxi-
mately one, meaning that u~ b, while for w< u/(L\I'7) the
normalized strain decreases rapidly. Therefore, our force bal-
ance argument yields the same crossover frequency we iden-
tified from Fig. 2(c). Physically, the traction due to the net-
work shear is supported by the drag force between the
network and solvent in the boundary layer of relative motion.
The higher the frequency, the faster the relative motion, the
more drag force, and the greater the network shear will be in
the interior of the gel.

This crossover behavior also shows up in the stress ex-
erted by the gel on the plates. Suppose the force on the plates
is interpreted as a measurement of the macroscopic shear
modulus. Again expressing the stress exerted on the upper
plate as o,,=Re[ exp(—iwt)], we obtain

G’ - ﬁ (12)
Pt pi(2L)”

G Imo 13
p.eff — b/(ZL) : ( )
Due to the slip and relative motion, the gel does not undergo
a homogeneous shear deformation, and G . need not be
equal to G.

At high frequencies, the network is pulled by drag to
move like the uncoupled solvent, and G, .=~ u, [Fig. 4(a)],
showing the response of an elastic solid being sheared be-
tween the plates. Below the crossover frequency, GII),eff de-
creases rapidly, taking the character of a network with fric-
tionless sliding boundary conditions, which does not exert
stress on the plates. Similarly, at high frequencies, Gg,eff
=~ yw [Fig. 4(b)], showing the viscous response of a simple
fluid with viscosity 7 sheared between the two plates. In Fig.
4(b), the quantity plotted is G| ./ 7, which is proportional
to an apparent viscosity of the medium. Below the crossover
frequency and for L>d, the apparent viscosity is enhanced.
The profile of Fig. 3 explains this enhancement: at low fre-
quencies, u, is nearly zero, and the solvent shear is approxi-
mately bw/d. Therefore the viscous stress on the plate is
approximately 7bw/d~T"2. In the rest of this paper we
describe analogous physics, which arises in the spherical ge-
ometry, and discuss its ramifications for microrheological ex-
periments.

II. SOLUTION FOR SPHERE MOVING IN GEL

Consider a sphere of radius a surrounded by a gel. We
solve for the flows and displacements in the frame of the
sphere, using spherical coordinates (r, 6, ¢). We consider a
sphere oscillating along the Z direction (#=0) with amplitude
B cos(wt).

In the frame of the sphere, the boundary conditions
for the fluid and solid at r=o are v(®,0,q)
=—(cos 0,-sin 0,0)Bw sin(wt) and u(, 6, d)
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FIG. 4. (Color online) (a) Semilogarithmic plot of dimensionless
G};,eff determined by the stress exerted by the gel on the plates, as a
function of dimensionless frequency. (b) Logarithmic plot of
Ggqeﬁ-/ (mw) as a function of dimensionless frequency. Gg,eﬁ- is
scaled by the frequency so the plotted quantity is proportional to an
apparent viscosity.

=(cos #,—sin 6,0)B cos(wt). The boundary conditions at the
surface of the sphere are

v(a,0,¢) =0,
ur(a’ 0’ ¢) = 0’
%" (a, 0, ¢) = Eiigla, 6, ). (14)

Here the dot denotes a time derivative, and o®Y™ is the
stress tensor of the polymer network. The last condition al-
lows the polymer network to slide past the surface of the
sphere in the tangential direction, with a stress exerted pro-
portional to the relative velocity. The magnitude of the force
is controlled by the friction coefficient . For E— % we
obtain no-slip boundary conditions, while for =0 we ob-
tain frictionless sliding.
In dimensionless form, Egs. (2)—(4) and (14) are

1 1
—curlPu—-—-V(V-u)=—yu-v), (15)
R p

curl> v+ VP =y(u-v), (16)
v(©, 8, ¢) =— (cos 6,— sin 6,0)b sin ¢,
u(, 6, ) = (cos #,—sin 6,0)b cos 1,

v(a,04)=0,
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ur(a7 0v ¢) = 0’

o™ (a, 6, ) = &igla, 6, B), (17)

where we measure lengths in units of a, time in units of 1/ w,
and pressures and stresses in units of nyw. The dimensionless
parameters are R=7nw/um, p=nw/Qu+\), y=Id*/n, b
=B/a, and é=Za/n. As mentioned before, I'~ 5/I*> [5],
where [ is the mesh size of the polymer network, so that y
~a*/I?. For convenience we keep the same notation for di-
mensionless fields as we used for dimensional fields.

Our method is an extension of the classic solution by
Stokes of a sphere moving through a viscous fluid [13]. The
velocity field is divergence-free and can be expressed in
terms of a single stream function W as follows:

V=curl( \I{(ﬁ ) (18)
rsin 6

On the other hand, the polymer is compressible, so the dis-
placement field has both a stream function for the
divergence-free part (P), and a potential function for the
curl-free part (y).

2
u = curl

: >+V)(. (19)
rsin 0

Taking the curl and divergence of the above equations,
leads to

1
- =Vix=-9Vx, (20)
p

~

lcurl“( CP¢ ):—ycurﬂ( ¢ Vo ), (21)

rsin 0 rsin@ rsin@

curl4( z:)6> = 7curlz<& - ﬂ) ) (22)

rsin @ rsin @

The solution for y is written in the appendix, and involves
three undetermined coefficients.
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Diagonalizing the equations for @ and V¥ yields

curl4<a> ¢ :curlz<)\a )(a) ¢ . (23)
B/ rsin @ Ng/\B/rsin 6

where
B - \I’ 9 ( )

and M is a two-by-two matrix. The appendix contains ex-
pressions for the matrix M and eigenvalues A,,\g, which
diagonalize the equations. The appendix also contains the
solutions for a and B; each involves three undetermined co-
efficients.

The nine undetermined coefficients are determined by im-
posing the boundary conditions at infinity and the sphere
surface. In addition, one must demand that Eq. (15) is satis-
fied by the combination of stream and potential functions in
Eq. (19). The conditions on the coefficients are displayed in
the appendix and determine the velocity and displacement
fields.

From the velocity and the displacement fields the (nondi-
mensional) stresses and pressure of the polymer and fluid can
be calculated as follows:

a_poly — %[Vu + (VU)T] + I(i - %) V. u, (25)
Aid_ gy 4 (Vy)T (26)

pP= f dr[’)/(ur_ vr) + Vzvr]' (27)

The total stress tensor is
O_total — Poly + 1,ﬂuid —pI. (28)

Integrating the stress tensor over the surface of the sphere
yields the total force on the sphere, which is (in dimension-
less form)

f=Re{fe"2, (29)

iRE2i+ (p+2R)+ (1 —iR)Y]—-[4i+ (2p+6R)+ (2 -3iR)Y' + (1 -iR)Z]

f=—6b1

iRi(p+2R) +RY]-[i(2p+6R) + 3RY' + RZ]

[l

/

N 4
Y=2\N-iyp+yp+ 7=—=p;

\r’l - lR

Y' =i2V-iyp,
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Vy

PHYSICAL REVIEW E 78, 061503 (2008)

Z=-——=—=(2p+2R - iRY"). (30)

V1 —-iR

In these expressions, whenever a square root appears, the
root with positive real part should be chosen. This expression
is one of the main results of this paper. Although it is in
analytic form, it is still unwieldy. In the next section we
summarize its properties.

III. PROPERTIES OF RESPONSE FORCE

The dimensional response force is Eq. (30) multiplied by
a’*nw. If interpreted using the generalized Stokes-Einstein
relation, this yields effective moduli

u Re{%}, (31)
67 Be 't

, w

= Z—W Im{#}. (32)
If Eq. (1) holds, we would expect Gly=pu;, and Goy=py
+wn. In the following we will describe the response force in
terms of the effective moduli. The descriptions in the follow-
ing sections are obtained by analyzing the form of Eq. (30).
To give clarity to the discussion, in all the plots we assume
that 7 and u are frequency independent.

To understand the properties of the response force when
the particle can slide past the network, first we look at the
limit of incompressible network, N — %, which displays all of
the effects due to sliding boundary conditions. Network com-
pressibility (finite X) complicates the situation by adding ad-
ditional features to the effective moduli. We leave a detailed
description of the more complicated scenario with effects
from both sliding and compressibility to the appendix, but
summarize the results in the discussion.

’ —
Geff -

A. Frictionless limit with incompressible network

To illustrate the effects of sliding when the network is
incompressible, we concentrate on the case of frictionless
sliding between the sphere and the polymer network, £=0.
When both the network and solvent are incompressible and
have no-slip boundary conditions, there is no relative motion
between the network and the solvent, and Eq. (1) holds [2].
In contrast, when the polymer network has frictionless
boundary conditions at the surface of the sphere, the network
and solvent move relative to each other near the sphere. This
relative motion between the network and solvent leads to
drag forces, which tend to diminish the relative motion, so
that far from the sphere the network and solvent move to-
gether. The far-field solution can be either that of an incom-
pressible material driven by no-slip boundary conditions,
that of an incompressible material driven by frictionless
boundary conditions, or somewhere in between. As in the
example of a gel between two oscillating plates, at high fre-

quencies, the solution driven by the velocities (the solvent,
with no-slip boundary conditions) wins out, while at low
frequencies the solution driven by displacements (the poly-
mer network, with frictionless boundary conditions) wins
out.

In the limit of frictionless sliding (é—0) and incompress-
ibility (p—0) Eq. (30) reduces to

RV/;/
i(2-3iR)+ (1 —iR)——=

I

V1 —-iR

Sine=—6b (33)

=
Ry
V1 —iR |

R| 3i+

The low-frequency limit is obtained when the first term in
the brackets in the denominator dominates over the second
term, and the high-frequency limit is obtained in the opposite
case. Therefore, the crossover frequency w; satisfies
|[R\y/\1—iR|=1. For y=a?/I>>1 (sphere larger than mesh
size), w,~|u|/(m\y), while for y<1 (mesh size larger than
sphere), w,=~|u|/(77y). The expression for w, in the Intro-
duction is written in terms of variables that can be easily
controlled experimentally using the approximation y=a?/1?,
and hence applies when I'~ 7/I?. Note that in these two
limits, the form of the crossover is the same as in the case of
the plates but with the length scale L replaced by a; in par-
ticular, the dependence on I' is the same as in the case of the
oscillating plates, with power law I'""/2 and I'"!, respectively.

For frequencies o> w,, the modulus G obeys Eq. (1), so
that Gl=pu, and Ghg=(nw+ u,). For o< w,, G behaves as

2 2Ny nw)

Gel(w < wy) = (5#1 "9 s
|t M

(2
—i §,u,2+77a) 1+

For the lowest frequencies, the real modulus Gly=2u,/3,
67% of the value in Eq. (1). The behavior of Gl as a func-
tion of frequency is plotted in Fig. 5.

Now we turn to the imaginary modulus G. Equation (1)
predicts that GJ=u,+ nw. In the example of the plates, we
assumed wu,=0, and found an enhancement in the effective
viscosity at low frequencies. In the case of a sphere there is
a similar enhancement to the effective viscosity, but sliding
also affects the estimation of u,.

First consider the case where the network shear modulus
is purely real (u,=0). In this case, all dissipation arises from
the viscous solvent and friction between the solvent and the
polymer network. The behavior of Gl with u,=0 is shown
in Fig. 6(a), GL;/ (nw), an apparent viscosity. When o> w,,
the apparent viscosity is #. For frequencies w<<w,, the ap-

(i = 112) ] )
INui+m3) |/
(34)
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FIG. 5. (Color online) Logarithmic plot of dimensionless G as
a function of dimensionless frequency with frictionless boundary
conditions between sphere and an incompressible polymer network.
Equation (1) would predict G/g= ;. The shape and spacing of the
plots indicates that there is a crossover frequency w,=|u|/(7\7y)
for y>1, and w,=|ul/(ny) for y<I1. For w<w,, effects from
sliding cause G to underestimate u; by up to 33%.

parent viscosity of the “solvent” contribution tends towards a
plateau with enhanced viscosity = 7(1+ \s‘;/ 9). Physically, as
in the case of the plates, the solvent moves more than the
network in a layer near the sphere. A region of enhanced
solvent shear and viscous drag is set up as the solvent re-
duces its motion relative to the network, until far away the
solvent takes the same motion as the network. As in the case
of the plates, the enhancement depends on I' as I''/2. In the
inset to Fig. 6(a) we plot ngf rescaled by its low-frequency
value, 1+(Gl—nw)/(nwVy/9), to show that the crossover
value is .

Now consider the case when the imaginary part of the
network modulus (u,) is nonzero. In addition to the contri-
bution to Gl described in the previous paragraph, there are
also contributions from the network modulus wu,. For w
> w,, the leading contribution is u,, the result of Eq. (1).
When o << w,, the leading contribution is 2u,/3, 66% of the
high-frequency contribution. For a constant u,, at high fre-
quencies the contribution proportional to 7w dominates,
while at low frequencies the contribution from u, dominates.
In total, Gy behaves as shown in Fig. 6(b).

B. Incompressible network with intermediate friction

For any finite value of &, there will be a crossover from
behavior similar to £=0 at low frequencies to behavior simi-
lar to §é— at high frequencies, as shown in Fig. 7. The
crossover is set by the condition |R[¢=1 and occurs at w,
~|£5|. Because the no-slip limit of Gl is sy, Gl appears to
cross over from a low-frequency limit of 2u,/3 to the high-
frequency limit u; at w=min{w,, w}. Similar behavior is
seen in the imaginary modulus G

IV. DISCUSSION

The main aim of this paper is to provide an understanding
of how sliding between a probe particle and polymer net-
work can affect the response function in a gel. Motivated by
experimental data, Starrs and Bartlett [10] have previously
suggested the possibility of frictionless sliding boundary

PHYSICAL REVIEW E 78, 061503 (2008)
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FIG. 6. (Color online) Logarithmic plots of dimensionless Gy,
as a function of dimensionless frequency for frictionless boundary
conditions between the sphere and an incompressible polymer net-
work. (a) Gliy/(nw) as a function of frequency for u,=0. This
contribution to Gl from solvent viscosity and network-solvent drag
dominates for small u, or high frequencies. Inset: Gy rescaled by
its low-frequency magnitude (see the text) to demonstrate that the
crossover frequency is w;. (b) Gl as a function of frequency. Equa-
tion (1) would predict Giy=u,+ no. For o< w,, effects from slid-
ing cause Gl to underestimate u, by up to 33%. The crossover
behavior is the same as that of the real part (G.y) except that for
> u,/ 1 the solvent viscosity (7w) dominates.

conditions being relevant in microrheological experiments.
Our solution shows how this may come about, despite the
fact that the liquid solvent always couples to probe particles
with no-slip boundary conditions in continuum fluid mechan-
ics. We find that, due to the coupling between the solvent and
polymer networks, in far field, the solvent can move as if it is
driven by sliding boundary conditions. Specifically, when the
fluid and polymer network have different boundary condi-
tions, at high frequencies this coupling tends to lock the net-
work into the motion of the fluid, while at low frequencies
the coupling locks the fluid into the motion of the network.

Our analytical solution for the force on a probe particle in
response to oscillatory motion quantifies the effect of sliding.
We have described the effects of sliding on the force felt by
probe particles in terms of an effective modulus Gz For
high enough frequencies, G matches the macroscopic shear
modulus G, while for low frequencies G.; may underesti-
mate G. We have identified two crossover frequencies, one
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FIG. 7. (Color online) Logarithmic plot of dimensionless (a)
Gl (b) Gly as a function of dimensionless frequency for an in-
compressible network and for boundary conditions with intermedi-
ate friction between sphere and polymer networks. In these plots
=4, and y=10* The behavior interpolates between that of no-
slip boundary conditions at high frequencies and frictionless bound-
ary conditions at low frequencies, with crossover frequency wy
~|u|/(Ea). For frequencies below both w, and oy the moduli can
be underestimated by up to 33%.

associated with sliding (w,), and one associated with friction
(wf). For any finite amount of surface friction, when fre-
quency is reduced below both w; and w; (@ <min{w;, w}),
G, tends to underestimate moduli by 33%.

The description in the previous paragraph applies in the
case of an incompressible network, as treated in the body of
this paper. However, in real materials the compressibility of
the network can lead to additional reductions in G, These
compressional effects complicate the behavior of G as a
function of frequency, but may be relevant in experimental
situations, so we have described them in detail in Appendix
B. Intuitively, a compressible network is softer than an in-
compressible network and should exert a smaller force on an
oscillating sphere. Our analytic solution identifies a third
crossover frequency associated with compressive effects
(w,). This is the same crossover frequency identified earlier
by other investigators [2,5]. In terms of the effective modu-
lus G4, the effects of compression and sliding together are
as follows: For frequencies much greater than w,, wg, and w,,
G.i; matches the macroscopic modulus G. For frequencies
such that min{w;, o} < © < w,, compressional effects reduce
Gy by up to 20%. For frequencies such that w.<w
<min{w,, wg, sliding effects reduce G by up to 33%. Fi-
nally, for the lowest frequencies, much less than w, wy, and
w,, both compressional and sliding effects reduce G by up
to 43% relative to G.

PHYSICAL REVIEW E 78, 061503 (2008)

For any specific experiment, our results describe how the
appropriate effects of sliding on single-particle measure-
ments should be accounted for. For example, if y=~a?/I?
>1, which occurs for particles larger than the mesh size,
then a good estimate for w, is given by nw/|u|=1/\y
~]/a. Therefore w, can be estimated in experimental mea-
surements, allowing determination of whether it is possible
for corrections to Eq. (1) from sliding effects to be important.
In general, u will be frequency dependent, and therefore so
will w,(w). A simple test, which follows from our analysis, is
that if throughout the range of experimental frequencies w
> w,(w), then one can determine that sliding will not affect
the effective moduli. In the following two paragraphs, we
apply this test to two sets of experimental results reported in
the literature.

Starrs and Bartlett [10] have observed a 2/3 reduction in
single-particle moduli for frequencies above 10 rad/s in
polystyrene solutions. Using the solvent viscosity of decalin
(2.6 mPa-s), a trap spring constant of ~1.66X 107 N/m,
and Figs. 6 and 7 of Ref. [10], nw/|u| can be estimated to be
0.3-0.6 for frequencies between 10 rad/s and 10* rad/s. To
obtain 1/Vy=I/a for the semidilute polystyrene solution
(concentration ¢=1.7c¢*), we use a bead size a=0.64 um
[10], and estimate the correlation length as [=R,(c*/c)
~0.06 um [18], where R,~100 nm [10] is the radius of
gyration. We obtain the estimate 1/\y=~10"'. From these
estimates we conclude that w may be slightly greater than wj,
but not by orders of magnitude. Therefore the effects of slid-
ing may be important.

On the other hand, Buchanan et al. [4] have reported that
the generalized Stokes-Einstein relation is accurate in worm-
like micellar solutions. Using the solvent viscosity of water,
and the moduli from Fig. 1 of Ref. [4], it can be estimated
that nw/|u| is between 1073 and 10° for frequencies where
the one particle microrheology data is reported, and in most
cases nw/|u|>1072 Using a mesh length scale of 10 nm
and particle radius of 1 um, 1/\y=1/a=~1072. Our calcula-
tion would then lead to the conclusion that for most of the
data reported, and certainly for frequencies v>100 Hz (for
which nw/|ul is at least an order of magnitude greater than
1072), the effects of sliding should not be important. In this
system, discrepancies from the generalized Stokes-Einstein
relation due to sliding effects can only appear for frequencies
below =1 Hz.

In the examples provided above, we have focused on es-
timating w,, rather than w;. However, if o< w,, sliding ef-
fects will not appear until < ;. This dependence on fric-
tion may provide a way to test the predictions of our analysis
by varying the surface chemistry of the probe particles [8].

While in most of this discussion we have focused on
probe particles larger than the mesh size (y=~a?/I>>1), our
results also apply when the probe particle is smaller than the
mesh size (y<1). In this case, ;= |u|/(77y) can be large
and may be more easily accessible to experiments. In addi-
tion, when probe particles are much smaller than mesh size,
they may be more likely to not directly interact with the
network, leading to small values of the friction coefficient
and large values for w,. Our solution provides a framework
to analyze experiments in this regime of small probe particle
size.
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Finally, an additional observation from the form of our
results is that there is the possibility for features of the fre-
quency dependence of moduli, including power laws, to be
obscured or distorted in the vicinity of the crossover frequen-
cies w;, w,, and w, This suggests that caution may be in
order near these crossover frequencies.

In the literature there has been much discussion of how
probe-material interactions can affect one-particle mi-
crorheological measurements. For example, near a probe par-
ticle the polymer network can be depleted by steric hin-
drance. One effect of this depletion zone is to change local
rheological properties, but another may be to increase the
likelihood that the bead slides relative to the polymer net-
work [10]. Our calculation takes into account the second
effect but not the first. Quantitative comparison of G to
experiments may require treatment of both effects, as well as
the effects from adhesion of probe surface to polymer net-
works [9].
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APPENDIX A: DETAILS OF SOLUTION

The solution to the equation for the stream function y can
be obtained by using the axisymmetry of the solution, so that
x is independent of ¢. In addition, due to the boundary con-
ditions at infinity, x must be proportional to cos 6. Using
these conditions in Eq. (21), we find that the radial depen-
dence of y satisfies an ordinary differential equation. The
solution to y, which results in finite displacements at infinity,
is

r r

G 1 &k .
X=ReH_2 +Hr+J<—2 . J)e‘kx’}e‘” cos 0}, (A1)
r

where k= \—iyp, in which the root with positive real part is
chosen.

To obtain Eq. (23) we need to find the matrix M, which
diagonalizes the equations for the stream function,

A ivR R
(o )=l T
Ag —iy —vy

In the above, time derivatives have been evaluated with re-
spect to the oscillatory function exp(—iz), which multiplies
all parts of the solutions. Explicitly, M is

1 (1 R)
M_ ’
i+R\-1 1

(A2)

(A3)

and the eigenvalues are \,=0, Ag=—(1-iR)7.

The solutions to @ and B [Eq. (23)] are found by a similar
procedure as the solution to . @ and 8 must be proportional
to sin® @ to satisfy the boundary conditions. The radial de-
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pendence obeys an ordinary differential equation, and the
solutions that result in finite velocities and displacements at
infinity are

B:Re{

Again, the square roots denote the root with positive real
part. Note that it would not be difficult to generalize this
method of solution to incorporate the effects of inertial
terms.

The boundary conditions Eq. (17) at r=a yield four (lin-
ear) equations for the coefficients A—G, since there both the
velocity and displacement fields each have an r and 6 com-
ponent.

Additional conditions on the coefficients A—G arise from
the boundary conditions for the displacement and velocity
field at r=2. Athough each has an r and a 6 component, the
r and € component give identical equations for the coeffi-
cients A—G, leaving only two independent conditions out of
the four.

B .
a= Re{ (Ar2 +—+ Cr) sin? ﬁe_”} , (A4)
r

E I —\ = i
D +—+ F(— + - )\ﬁ) e“‘)‘ﬁ’} sin® 496_"} :
r r

(AS)

2MIA+2M7D+H=b, (A6)

2M5|A +2M5»D = —ib. (A7)
In these equations the matrix elements of M~! appear.
Equation (15) has terms proportional to exp(=k,r),
exp(=V=Ngr), 7%, and 3. The parts proportional to the ex-
ponentials are automatically satisfied by the general solutions
in Eqs. (A1) and (AS5). The terms proportional to ° and r~3
give nontrivial relations for the coefficients A—G. The r and
6 component give identical equations for the coefficients,
again leaving two independent conditions out of the four.

i(2M7]A +2M7)D + H) + (2M5|A + 2M5,D) =0,
(A8)

. -1 -1 -1 -1 4MT]1
i(2M7{B +2ME = 2G) + (M5B + 2ME) = = +C.
¥

(A9)

However, note that the first of these (from r°) is not indepen-
dent from the equations arising from the boundary conditions
at r=o,

Together, these produce only seven linearly independent
equations for the nine coefficients A-J, so solving them
leaves two coefficients undetermined. However, these unde-
termined coefficients only appear when the stream and po-
tential functions are considered independently of one an-
other; in the physically meaningful combinations expressing
the velocity and displacement field no undetermined coeffi-
cients remain. Since the solutions are not illuminating, we do
not write them down.
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APPENDIX B: PROPERTIES OF THE RESPONSE FORCE
WITH COMPRESSIBLE NETWORK

In this appendix we describe the properties of the re-
sponse force when effects from compressibility of the net-
work are included. First we isolate the effects of compress-
ibility by examining the case of no-slip boundary conditions
between the sphere and the network. Then we include effects
from sliding of the sphere past the network.

1. No-slip limit with compressible network

In this section we address the limit of no slip between the
sphere and the polymer, {—% when \ is finite. Examining
the form of the solutions, one can see that the stream func-
tion y corresponding to the compressive motion of the net-
work involves an exponential exp(—r\e’E// a) with length
scale Re[a/\p7y]. The compressive motion dies off at longer
scales due to the coupling to the incompressible fluid. Asso-
ciated with these compressive effects is a crossover fre-
quency w, set by the condition |p|y=1, or w.=~[2u
+\|/(n). The expression for w, in the Introduction is writ-
ten in terms of variables that can be easily controlled experi-
mentally using the approximation y=~a?/I%, and hence ap-
plies when T'=#%/l’>. For frequencies less than w,,
compressive effects of the network are important, while for
frequencies above w,, compressive effects of the network are
not important. This crossover is the same as that identified in
previous studies [2,5].

For frequencies w> w,, the real part of the modulus G
tends to u;, in accord with the expectations of Eq. (1). For
frequencies w << w,, the real modulus is diminished, and for
very low frequencies tends to the value

Géff(w — 0, — »)

‘ 2
/u’l
+

at)

i 2(>\+2M1)2 (A +2pu) B
o) ()
2N +2uy) 20N+ 2u)

Equation (B1) ranges from 80-100 % of the high-frequency
limit w,. For an incompressible network (A — ) there is no
reduction, while maximal reduction (20%) occurs for A=0
and u,> u,. For ;= w,~\ (reasonable values for an actin
network), the reduction is about 14%. In Fig. 8 the behavior
of Gl is plotted.

Now we turn to the imaginary part of the effective modu-
lus GZ;. As in the incompressible case it is useful to analyze
a contribution with u,=0 separately from the polymer net-
work contribution. At high frequencies, for u,=0, Gl
=wm, in agreement with Eq. (1). For frequencies below w,,
Gy crosses over to behavior in which
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FIG. 8. (Color online) Logarithmic plots of dimensionless G
as a function of dimensionless frequency for no-slip boundary con-
ditions between the sphere and polymer network. Equation (1)
would predict G.= ;. The shape of the plots indicates a crossover
frequency w,=|2u+\|/(77y). For w< w,, effects from compression
cause Gl to underestimate u; by up to 20%. (b) Gy for a range of

v and A=p=po.
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x| 1+

"

Note that as w—0, G~ w"?. This behavior is plotted in
Fig. 9(a), which shows the quantity G/ (7w) (an apparent
viscosity), so that the high-frequency regime appears as a
constant, while the low-frequency regime diverges as w™!/2.
The low-frequency divergence of the apparent viscosity re-
sults from the fact that at low frequencies, the compressive
length scale Re[a/\p7y] diverges, and so there is a larger and
larger volume with appreciable relative motion between the
solvent and network. The dissipation at low frequencies is
increased by the friction between compressive modes of the
polymer network and the incompressible solvent. To show
that the crossover frequency is w,, in one of the insets we
"

plot Gl rescaled by its low-frequency magnitude, (Gl
- nw)/[Ggff (u)< wc)|w:w(:_ 7]CU]+ 1.
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FIG. 9. (Color online) Logarithmic plots of the imaginary part
dimensionless Gl as a function of dimensionless frequency for
no-slip boundary conditions between the sphere and polymer net-
work. (a) Gly/(nw) as a function of frequency for u,=0. This
contribution to Gy from solvent viscosity and network-solvent drag
dominates for small u, or high frequencies. At low frequencies
(w<w,), G’e/ff'vw”z (top inset). Lower inset: Gl rescaled by its
low-frequency magnitude (see the text) to demonstrate that the
crossover frequency is w,. (b) Gog as a function of frequency. Equa-
tion (1) would predict G,y=u,+ 7w. For o < w,, effects from com-
pression cause Gl to underestimate u, by up to 20%. The cross-
over behavior is the same as in the real part except that for
< u,/ 7 the solvent viscosity (7w) dominates. (c) G for a range of
v and A=p=py.

Now consider the case when the imaginary part of the
network modulus (u,) is nonzero. In addition to the contri-
bution to Gl described in the previous paragraph, there are
also contributions from the network modulus w,. For high
frequencies (w>w,), this additional contribution is simply
Mo, as expected from Eq. (1). For low frequencies w << w, this
contribution is diminished to the limiting value
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FIG. 10. (Color online) Logarithmic plots of dimensionless G,
as a function of dimensionless frequency for frictionless boundary
conditions between sphere and polymer network. Equation (1)
would predict G=pu;. (a) For frequencies less than both w, and
o, effects from sliding and compression cause G to underesti-
mate u; by up to 43%. (b) G/, for a range of y and N=pu;=pu,. If
0, < oy, for v.<w<w, effects from sliding can cause G to un-
derestimate u; by 33%, and for w << w.<< w,, compressional effects
cause an additional underestimation by up to 43% of u,.

( RS Su%))
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As in the real part, the low-frequency value is between 80%
(for N=0, w,> u;), and 100% (incompressible, A=) of the
high-frequency value. For u;= u,=N\, at low frequencies
the low-frequency additional contribution is about 81% of
the high-frequency additional contribution.

For a constant w,, at high frequencies the contribution
proportional to 7w dominates, while at low frequencies the
contribution from u, dominates. This yields GZ;, which be-
have as shown in Figs. 9(b) and 9(c). Note that the low-
frequency enhancement discussed in the case w,=0 is not
readily apparent since the contribution from u, dominates at
low frequencies.

2. Frictionless limit with compressible network

Now we turn to the opposite limit of no friction between
the polymer and sphere (£=0). As in the incompressible
case, we expect that for frequencies below w, the far-field
solution takes the character of a solution with frictionless
sliding boundary conditions. For frequencies w> w,, the

061503-12



ROLE OF SLIP BETWEEN A PROBE PARTICLE AND A ...

a)
"
eff
W\
K 2
In— - A= =1
— - A= =10
N A=8py =1
\\ A=8p; v=10
\
1
| | IR | | M| | MR
T T T T T T T T
) —1 0 1
10 10 10 77w/,u1 10
b)
le/ff /\_:#1 7=l po=m /
1 A= =1 =10 /
10.00 {AZ8m =L
570 1A= =10 = I /
A=p1 =10 po=10p11
A8y 910 o
A=0 =1 pe=10m
Loo | [A=0 7=10 m=10m
. ‘- _ ‘ /
R AL B A R NS
107 1072
)
~=10?
1" —_—
eff | | y=10°
H1 7=10*
~=10°
=106
100 |8 = - -
~=107
~=10""
y=10"%
0.66 =
- - -—
0'57 Iy _uu\ —\\H il ﬁ\m‘ NIRRT BRI R ETT B TR ETIT] B W T R ST EENETWETT
LA A AL DAL B ) B L] B LA I DL B
-9 -6 -3 0
10 10 107 pw/p; 10

FIG. 11. (Color online) Logarithmic plots of dimensionless G
as a function of dimensionless frequency for frictionless boundary
conditions between the sphere and polymer network. (a) Gly/ (7o)
as a function of frequency, for u,=0. This contribution to G from
solvent viscosity and network-solvent drag dominates for small u,
or high frequencies. At the lowest frequencies Gy~ " (left in-
set). Right inset: Gy, rescaled by its low-frequency magnitude (see
the text) to demonstrate that the crossover frequency is w,. (b)
Equation (1) would predict that GLg= s+ 7w. For frequencies less
than both w; and w,, sliding and compressional effects cause Gy to
underestimate u, by up to 43%. The crossover behavior is the same
as in the real part except that for w> u,/ 7 the solvent viscosity
(nw) dominates. (¢) Gy for a range of y and N=pu;=pu,.

modulus G obeys Eq. (1), so that Giz=pu; and Gog=(nw
+u,). For frequencies less than w,, now that there is also
compressibility, there are two cases to consider. In the first
case, w.< w,, while in the second case w,> w;.

First, consider the case where w.<w,. For o, <w<w;,
the real modulus Gl;=2u,/3, 66% of the value in Eq. (1).
For w << w,, compressive effects come into play and further
diminish G/, which tends to
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FIG. 12. (Color online) Logarithmic plots of dimensionless (a)
Gl (b) Gl as a function of dimensionless frequency for boundary
conditions with intermediate friction between the sphere and poly-
mer network. In these plots A=u;=u, and y=3. The behavior in-
terpolates between that of no-slip boundary conditions at high fre-
quencies and frictionless boundary conditions at low frequencies,
with crossover frequency wy. For frequencies less than w,, w, and
., the moduli can be underestimated by up to 43%.

P(Z‘”“( 2, ))2

/ 2 3N +2uy) (A +2pu,
Geff| ‘;ﬁg = 5#1 2 2
il )
3N +2uy) 3N +2uy)

(B4)

The low-frequency limit of G is between 57% (compress-

ible limit with A—0, w,>pu;) and 66% (incompressible
limit, A —<0) of the high-frequency value. For u; =~ u,=\,
the low-frequency limit of Gy is about 60% of the high-
frequency value w;.

In practice the condition that w.< w << w; may not be met,
either because w;<w,, or because . is not sufficiently
smaller than w,. In this case Gl appears to immediately tend
to the behavior of Eq. (B4) when w< w,. We plot represen-
tative behavior of Gl in the frictionless limit in Fig. 10.

Now we turn to the imaginary modulus G Again, first
look at the contribution arising from the solvent viscosity
and drag between the polymer network and solvent, by set-

ting u,=0. When o> w,, the imaginary modulus Gl

= nw. For frequencies o< w,, Gl crosses over to behavior

of
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2yu] yui ~ :
3+ 5+ Y +1
o\ +2u)° (N +2uy) N+2pu

Giflo<w,u,=0)=no| 1+

The behavior of Gl with wu,=0 is shown in Fig. 11(a),
which shows the apparent viscosity Goy/ (7w). In one of the
insets we plot Ghy rescaled by its low-frequency value,
(Gly= 1)/ [Gigy (0 <L @)= — 7] +1, to show that the
crossover value is o,. Note that for certain parameters, as
decreases, one can see the effective viscosity approach a pla-
teau, which has the same origin as the plateau in the incom-
pressible case described in the main text. At even lower fre-
quencies, Eq. (BS) is dominated by ' behavior. This has
the same origins in the compressibility of the network as
discussed in the previous section dealing with no-slip bound-
ary conditions.

If u, #0 there is an additional contribution to the imagi-
nary modulus. For w> w,, this contribution is u,, the result
of Eq. (1). When w,<w<w,, this contribution is 2u,/3.
Finally, when w < w,, this contribution tends to the limiting
value Ggff(w —0,E— 0)

143 + 23
1At 20
_2 3N +2p)

=p
3 2<] LM >2+< Ty
3(N+2py) 3(N+2u)

)2. (B6)

( M1
)\+2,bL1

(B5)

3)\/ 2ynw
)\+2M1

2
+3) +3<L+
)\+2,U/1

This limiting value is smaller than the contribution from u,
at high frequencies. It is between 57% (compressible limit,
A=0, w,> u,), and 66% (incompressible limit, A — ) of the
high-frequency contribution corresponding to Eq. (1). For
M1 = W, =\ the limiting value is 58% of the high-frequency
contribution.

If w.>w,, for o<w, the additional contribution to Gl
immediately tends to the value in Eq. (B6).

3. Intermediate friction

For any finite value of ¢, there will be a crossover from
behavior similar to £=0 at low frequencies to behavior simi-
lar to é— o0 at high frequencies.

The crossover occurs at w,=|%-|. Typically, as plotted in
Fig. 12, because the no-slip limit of G is closer to u;, G
appears to cross over from a low-frequency limit of 2u,/3
(or less, if compressional effects are important) to a value
closer to the high-frequency limit u; at w=min{w,w}.
Similar behavior is seen in the imaginary modulus G,
shown in Fig. 12.
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